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Using inequalities (20) and (21), we obtain from the definition of &(&n,z) 

I%& rlt 0J-k IPIt -i)lGlPI{expjq~(A,+B3dt]+ 

exp[q j(-% + Wdtl-2} 
II 

It is seen from the latter formula that $r(h, q, 0)#0 follows from inequality (19). 
The first inequality of (21) is satisfied not only in the circle 0 but also in the interval 
J. Consequently y,'(h,q, O)#O, follows from the inequality (19), i.e., (11) is not satisfied, 
meaning, there are no eigenvalues in this interval. The theorem is proved. 
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AXISYMMETRIC FLEXURAL OSCILLATIONS OF A THIN DISC* 

V.A. POPOV 

Using methods of the theory of singular perturbations /l-3/, we construct 
the asymptotic forms of the eigenfrequencies of flexural low-frequency 
oscillations of a thin disc. Application of the method of homogeneous 
solutions /4/ or the superposition method /5/ reduces the problem under 
consideration to an infinite system of linear algebraic equations. Unlike 
these approaches, the theory of singular perturbations enables us to 
obtain explicit formulae for corrections to the oscillation eigenfrequencies 
obtained from the classical theory of plates. 

1. Formulation of the problem. We consider the problem of the axially-symmetric 
flexural oscillations of a thin disc of radius a and thickness 2h(e =h/a<1) in a system of 
cylindrical coordinates (~,(P,z). The planes z = +h and the side surface r=a are free from 
stresses. 

In dimensionless coordinates p = rfa, 5 =zlh the problem may be written in the form 

(1 - 2v)a&& + @Y&u, -I- (1.1) 

- 2 (1 - v)e"L$ (p-X$ (pu,)) + par = 0 
2 (1 - v)%% + sP-% (Pa&) + 

(1 - 2v)e*Au, + Mu, = 0 

G (4Mp + %u&=fl = 0 (1.2) 

d I2 (1 - qapz + 2vp-'47 (pu,)l+*:1 = 0 

d I2 (1 - Wp$ + 2v (a,% + p-'uT.)I,, = 0 (1.3) 

G (+, + a,~,),=, = 0 
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d = G/(1 - ZV), p = p,hWld, A = ap3 + p-l,yp 

where modulusul. (Pv E, s), uz (PY E> e) are the coordinates of the displacement vector, G is the shear 
Y is Poisson's ratio, PI is the density, and o 

also iniroduce the dimensionless coordinate T == (P - 1)/e. 
is the oscillation frequency. We 

We will seek an asymptotic solution of (l.l)-(1.3) in the form of the sum of a regular 
solution v (P, %, E) and a boundary-layer type solution w (z9 5, e) 

" = h (v (P, E, s) + w (t, 5, a)) (1.4) 

V (p, %, E) = i EnV(“‘(P, %) 
ri=o 

N-w 

W (.t, %, E) = Em 3 E"W(") (T, E) 
71 =o 

N-4 

(1.5) 

Each of the functions v and w is, by construction, an asymptotic solution up to O(eN+l) 
of (1.1) and (1.2), w tends exponentially to zero as Z--t-x, and (1.4) satisfies (1.3) up to 

0 (&N+l). 

2. Construction of the internal solution. Substituting the asymptotic expansion 
(1.5) for v and " into (l.l), (1.2) and grouping together terms w:;hthe same powers of s 
we obtain the following boundary-value problem for the functions vr and @(OGk<N): 

(2.1) 

2(1 - Y)a,%!b) + p-Vp(pa&-')) + p!k-2'(p, %)= 0 

12 (1 - Y) dgJ!k’ + zvp-VP (&x$+l))]+*, = 0 
k-4 

(2.2) 

I$"-"' (p, 5) = 2 (1 - v) a0 (p-VP (pv$k-2)) + nz pnvy-4 

k-4 

$k-*) tp %)=(, _ &) A,(*-2) + z p (*-'l-4) 
L 9 1 .VZ 

n=Yl 

Here and in the future, all quantities with negative indeces are taken to be equal to 
zero, Moreover, the expression joined by the summation sign with summation from n=i t0 

n=j with j<i is also equal to zero. 
We are considering flexural oscillations of a disc, and SO 

u!k'(p, - %)= - u!k'(p, E), Ulk'(P, - %)=vr'(P, %) 

In this case, the solution to (2.1) may be written in the form 

(P, rl) + (E-d P:k-"'(~, rl))drl f 
II 

2+3,dk-” (p, 1) t % f P!k-2'(p, q)drl] 
0 

Given that the solubility condition 

- a, (p~$~-l) (p, 1)) + s’ P$‘-‘) (p, %) d% = l0 i-2v 
P 

0 

is satisfied, the solution of (2.2) is described by the formula 

dk’(p, %)=fk(P)- +-+s" [$aO(Pv!k-"(P* q)) + 

0 

where h (P) is an arbitrary function that does not depend on %. 
From (2.3), (2.5) we determine by integration 

L'!~) (p, %) = %f;-, (p) + (1 - v)-' ('/a (2 - ~)%a - %)a,&-,+ v:k'k-b) (P, %) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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G) (p, E) = fr (p) + '/,vE* (1 - v)-%-~ + VZ(k'k-41 (p, E) 

me functions V(k.n) depend on f,(p) when i,<n; when n ( 0 V@* *) = 0. 
The eolubility condition (2.4) , taking account of (2.5) and (2.6), xeduces to an egUatiOn 

for fl (p) (1 = k - 4) 

A% = c,Ml (P) i- 'S,r-, (P) 12.7) 

Tfie functions G.j(p) depend on f,,(p) when 'nG,<i; when j<0 Gi,, = 0. 
Continuing the calculations, we find 

1 
p!k,k-*)(Pv et= %O(i _-v) (* _&,) (I- 3(1 - v)(3- v)!! + (2.8) 

50(3 - 2v)zs - 60(7 - 2V)F;]Mk-s f 

& [1/14(1 - v)s (4 - v)E'- '/&(7v3 - 10~' - 26v + 24)&e + 

(43- 30v - 8va)ps f 4(2vq + &5v- 27)E]&A&_,) + 

v!"* k-@(p, E) 

V(k.‘+4) tp, f)= g' L 16(1 -v) (1-S) i 
[2(1 + 4v)- (s-- ~~)~*)&-~ + 

&@- v)~(2+Y)~*+2(7v~+3v~-2v-3)~~f 

6(* + 4v)]A&,}+ VP*"-"'(p, g) 

G, r-a(~)=-CpAMz-2 (p) + ~0%4 +%1-4(p) 

TV-11 c = 33v’fmv-422 
e,=riiq=zj* 8 700 (i - 2v)' 

The force vector F(&P)on the side surface, corresponding to the displacement v{p,& a) is 
found from the formulae 

(2.10) 

F(E, e) = d kiekF(‘) (6) 

F$"'(Q=]Z(I - v)a@zJ!k-l) + 2V&"!k + p-Mk-'&l 

F!"'(Q=(1 - 2v)(a# + a& W-l))p=il 

Substituting (2.6)-(2.8) we obtain the formulae 

(2.9) 

&k'(E)z_~ [A-, -t @k-k + (q Es - 1, b‘%fk-l],_l + 

t 
P - -a t) Mk-4 (if + 

&([-9(i-v)~~~;+2(7+6v--23v')~"- 

6(~t_4V)(2-~)~]b~~-r_t(i-V)[3(i-v)(3--)~*- 

50(3 - 2v)es + 60(7? 2x)&] M;-dp-r. “f- fi? k+‘(6) 

fik’ (5) - _I+(-$ &i&k-k + (t* - G) Nit, - 

.-B& @(I - 
v)'&4+2(8v'+&t--2)E*+ 

4(27-i& - 2v*)] a&M,-, 
1 
m + F'3k-k)'Q 

The functions F@**) depend on fl (p) for l<;.. we can satisfy the boundary conditions 
(1.3) up to O(s4), requiring that the following conditions for f,,*(p) should be satisfied .- 
with s-=30 and n=i 

Conseguently, in expansion (1.4) for w we can set Qb=4. 
The general solution of (2.7) and (2.11) for f*(p) takes the 

(2.11) 

form 

(2.12) 
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where a, is an arbitrary function, Jo and J, are Bessel functions, 1, and I, are modified 
Bessel functions, and the number p is one of the positive roots of the equation 

P (J (P) + 1 (~1) = 2 (1 - v) (2.13) 

To make the following calculations more convenient , we will define the constant a, from 
the normalization condition 

whence we find 

ao=If~[la(p) + J*(P) - Wl (I(P) + J WI-“1 
Problem (2.7), (2.11) for jr(p) is soluble when the condition ~1~ = 0. is satisfied. 

Here the problems for ja and jr are identical, and we can set jr = 0. 
To find the functions j,, (p), and the numbers IL, with n> 1 it is necessary to consider 

the boundary-layer solution w. 

3. Construction of the boundary-layer solution. We denote by a(~,& e) the stress 
tensor 

vector 

of the 

corresponding to the displacements W. Using the asymptotic expansion (1.5) of the 
function w, we obtain the following formulae for the components of the asymptotic form 
tensor a: 

N-4 

(3.1) 

The equations for the components of the tensor (r(k) in the semi-infinite strip D - {‘F< 
0, I& I( 1) are reduced to the form 

a+$@ + ,,;;),Q;k-l) (3.2) 
a,&' + O&')= Q;“-” 

Q~k'(t,~)=-2BJ'k- io(- +-"(a:)- u&$- S:k-8) 

Q$k'(z,&)=- 2v&_Tk - $_(- 7)L-"&)_S$k-@ 

k 

Sk) (T, f) = 2 p,w(k-*) 

a-0 

on the sides E = fl and z = 0 we are given the following boundary conditions: 

a$ ('F, *I) = 0, utk*O) (X.,&:1) = -2vTb,(x, +I) (3.3) 

u!:*" (0, &) = -2vTk-1 (0, &) - F'?' (E) (3.4) 

a!:) (0, E) = --F':*) (F;) 

Problems (3.2)-(3.4) are boundary-value problems of two-dimensional elasticity theory on 
the bending of a semi-infinite strip D. The conditions for the existence of exponentially 
decaying solutions of these problems were studied in /6-g/. These conditions may be written 
in the form 

(3.5) 

(Fr ck+Q (E) E> = js (TQ;~-~) - EQIk-“) dz dE - 
0 

2~ <ETk_l(O,E)> + 2v j T~-I(~.~)~~~I:=z--~ 
-m 

(3.6) 
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Here and henceforth. angular brackets signify integration with respect to 8 from E = -i 
to E = 1, and the double integrals are evaluated over the region D. 

We multiply the second equation of (3.2) by T and integrate over D. After integration 

by parts taking account of (3.3) we obtain 

Substituting the expression for Qp-1) into this formula, we arrive at the relationship 

Then (3.5) is transformed into 

<P;k+a) (E)>= 1s (S;k-"+ TS;~-") dz dE 

Hence, for k < 4 we obtain a boundary condition for fi(P)(l= k + l< 4) of the form 

34 - gv (QV$p=r= - 20(1 _2v) M;_,(1) (3.7) 

Condition (3.6) may be written in the form 

k-l 

(&F:k+“) (E)) = - 2 sj (- -C)k-a-1 (T&’ - 

&CT;!:’ + #) d:; + &S;k-a) - .S:'-')) dr dt 

For k= 0, the right-hand sdie of (3.8) is equal to zero. From 
the equations 

(3. l)-(3.4) we obtain 

(3.8) 

(the proof is carried out by integrating (3.2) by parts with appropriate multipliers). It 
follows from these formulae that with k = 1* conditions (3.8) reduce to the form 

@+'+4'(E)- '/ r av * ET(k+*'(Q)- 0 - (3.9) 

Conditions (3.8) with k = 2 also reduce to the form (3.9) using analogous, but more 

complicated, calculations. From (3.9) and (2.10) we obtain the second boundary condition for 

the functions jr(P) with l= k+ 2Q 4 

” I 

(fl + vf&1= 20 (I’_ &)- ( 4 (4 + V) (1 - 2v) 8,Aj~_, - (3.10) 

(24 -!- v) M-, - 87 (;;;t;)_-tv;lh y&-4 + 
779 - eov - 19v’ 

28 lb-4 p~l 
I 

4. Calculation of the asymptotic forms of the eigenvalues. We consider the 
boundary-value problem (2.7), (3.7), (3.10) for the functions f, (p) with Z> 1. The solutions 
fi(P) are determined apart from the term czrfn (the solution of the homogeneous problem) and . _ 
so it is convenient to determine the constant a, from the supplementary orthogonality con- 

dition 

f Pfs (P)fl (P) *=o 

We multiply (2.7) by pfO(p) and integrate with respect to p from 0 to 1. After inte- 

gration by parts, taking account of (4.1) we arrive at a formula that determines the quantity 

i 
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With 1<3, in particular, we obtain 

w'n = ww," iP + 7 (1 - Y)* (I (p) - J (p))/(7v - 17)1, P, = 0 

The solutions of the boundary-value problems for f$(p) and f*(p) have the form 

fa (P) = aaJ (PP) + baz (PP) + kpJ, @PI/J, (p) + 
k+PZl bPYZl @I + do (P), fs (P) = 0 

krt = oo (w, z!z w~PW~P~) 

aa = k.. (Z/P + J (P)) + 6, ba = -k+ (2/p + Z (p)) + 6 

(4.2) 

(4.3) 

6= 9v-34 
20(1-2v)2 a& 

From (4.1), we determine 

% = a0 [(ba - a,W (P) + J (P))~P + a, (1 + Ja (P)) 1- 

ba (1 - 1’ (P)) + (km + k+) (PZ (P)J (P) - Z(P) - J (P)YP’I/~ 

From (4.2) with I= 4 we find. 

w~=Y~~(~ - 2W1@,I(24 + v)fo'jr -- (34 - 9v)fof;l - 
20 (I- v) ~&h’ + v (8 - v) ~Lof,,“Ll- csvOp - 

ca j P/O (r&s -t ~&o) dp 
0 

Table 1 gives the values of pO, p'r and pr for the first six oscilation frequencies with 
v = '1,. The formulae obtained enable us to find more exact values for the eigenfrequencies the 
following are satisfied: 

I e*lrh I c 1, I e*khh I =z iI 
-- 

whence e<min(l/l p&l, 1/l c,/p4I). For the first oscillation frequency, we apply the method 
with e < ‘I,, and for the second, we apply it with e(ll,. 

Table 1 Table 2 

i% 1 U. 1 PI / P. M ) N =C 1 6 ( 8 1 [IO1 

1 0.275.101 -0.338.10s 0.529./O' 1 0.1815 0.1811 0.1811 O.i8li 
2 0.494.10' 

0.257.10' 
-01275.1W 0.482.10' 

3 -0.328.10' 0.497.10s : y;;;3 
0.7617 

:::Cg 
0.7615 

1.711 1.711 
4 0.820.10‘ -0 188.10' 0.598.100 4 3:138 2.991 3.007 2.999 
5 0.201.W -0.721.10' 0.307.1Om 

; 
4.914 4.543 4.612 4.587 

,6 0.418.10' -0.216.169 0.133.10" 7,085 6.310 6.509 6.438 

Table 2 gives the Vah2S Of B = d 1/p1/G for V = '1~. e = 0.02 for the first six oscillation 
eigenfrequencies; in the last column, we give the values of a according to refined Mindlin 
theory /lo/. 

T&e,values of 52 with N = 4 correspond to those found by the classical theory of plates. 
With N = 6 and N = 8 we obtain more exact values of P. 

Remarks. lo. In an analogous way, we can construct the asymptotic solution for the case 
of oscillations that are symmetric about the central plane, and also with other boundary con- 
ditions on the side surface of the disc. 

2°.Theboundaryconditions (3.7), (3.10) for the functions h(p)1 maybeobt.&nedfrom the results 
of /ll/. It should be noted, however, that the method described above enables us to construct 
an asymptotic solution in the case of a plate of arbitrary form /3/ and variable thickness, 
where the results of /ll/ cannot be applied. 

The author thanks V.V. Kucherenko for suggesting the problem and for discussing the results. 
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ANTIPLANE DYNAMICAL CONTACT PROBLEM FOR AN ELECTROELASTIC LAYER* 

O.D. PRYAKHINA and O.M. TUKODOVA 

The antiplane dynamic contact problem of the excitation of a semibounded 
electroelastic layer with a lower boundary sharply constricted by a single 
electrode as the simplest transformer of electroelastic waves is con- 
sidered. The electrode is modelled by an absolutely rigid polar stamp. 
In the region of contact between the electrode and the medium, the electric 
potential and the amplitudes of the shear displacements are given, and 
outside this region the surface is free from stress and normal component 
of the magnetic induction is equal to zero. 

One of the approaches to studying the propagation laws for electro- 
elastic shear waves in a medium and on a surface, where this approach is 
based on the use of the method of fictitious absorption is proposed. A 
comparative analysis of the behaviour of the basic characteristics of the 
problem for the coupled and uncoupled problems is given, and the behaviour 
of the amplitude-frequency dependence on the electrode width and the 
oscillation frequency is studied. 

1. Let the medium occupy the region --oo <x, z,<oo, Ogy<h. As an electroelastic 
material, we consider an XY-cut of piesoelectric crystals of the 6mm hexagonal crystal SYUP 
metry class and a piezoelectric ceramic polarized along the s-axis. This case corresponds to 
the excitation of a shear surface waves w,(x,y)e-'"'. 

The propagation of electroelastic shear waves in the quasistatic approximation for the 

*Prikl.Matem.Mekhan.,52,5,844-849,1988 


